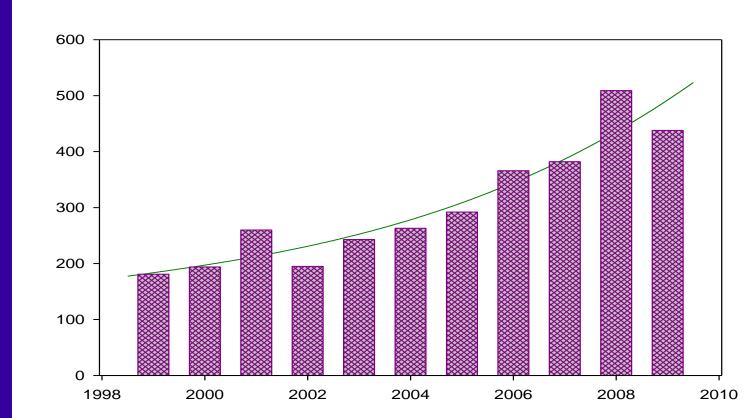
In-Season Precision Applications of Fluid Fertilizer to Optimize Cotton Productivity and Nitrogen Use Efficiency

Frank Yin, Chris Main, Owen Gwathmey, Michael Buschermohle, & Don Tyler University of Tennessee



N Management for Cotton in TN

- Application Rate:
 - 30-60 lb N/acre on bottom soils
 - 60-80 lb N/acre on upland soils
- Application Timing:
 - Preplanting or at planting
- Application Scale:
 - Uniform-rate for the entire field
- N Source:
 - Ammonium nitrate

Ammonium Nitrate Price in U.S. (1999-2009)

Price (\$ ton⁻¹)

Year

Improvement in Cotton N Management in TN

- Application Rate:
 - Higher rate
 - Lower rate
- Application Timing:
 - In-season application
- Application Scale:
 - Variable-rate within a field

- N Source:
 - Fluid N fertilizer

Objectives

Determine the optimal N application rates for high-yielding cotton production systems in Tennessee.

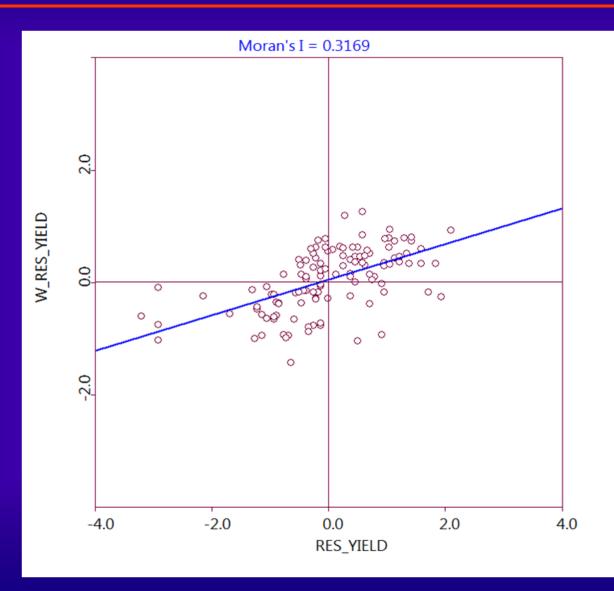
- Assess the spatial variations in lint yield, normalized difference vegetation index (NDVI), leaf N concentration, and soil nitrate within a field.
- Examine the relationships between lint yield and NDVI and between crop N nutrition and NDVI.
- Develop algorithms for in-season variable-rate application of fluid N fertilizer, and compare variable-rate N application with uniform-rate N application in terms of N consumption and lint yield.

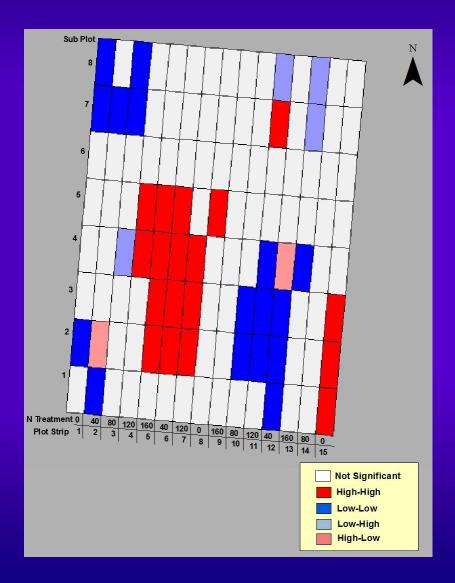
Experimental Design

- •Location: Gibson
- **Duration:** 2009-2011
- Pre plant N: 40 lb N/a
- Side dress N: 0, 40, 80, 120, 160 lb N/a
- •**Strip plot:** 40' × 800'
- Design: Randomized complete block (RCB)
- •Replicate: 3
- •Sub-plot: 40' × 100'

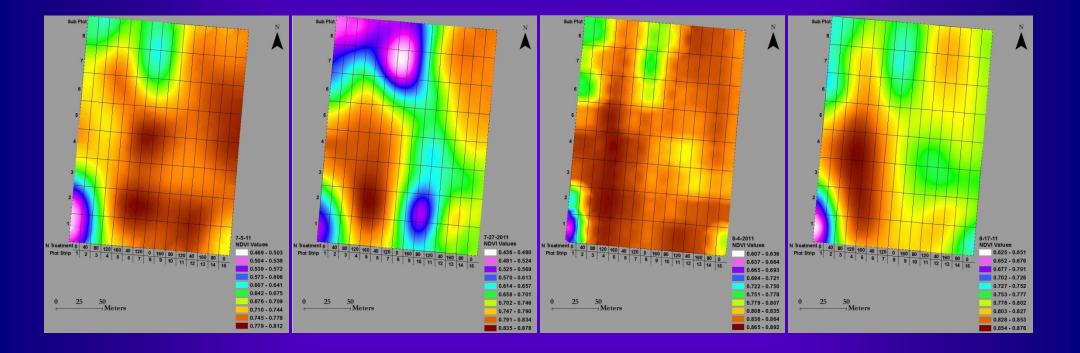
Sampling and Measurements

- Soil nitrate before cotton planting
- NDVI readings (early square, early, mid, & late bloom)
- Leaf N concentrations (early square, early, mid, & late bloom)
- Lint yield at harvest using a picker equipped with an automatic yield monitor
- Soil nitrate after cotton harvest
- Relationships among lint yield, NDVI, leaf N, & soil N

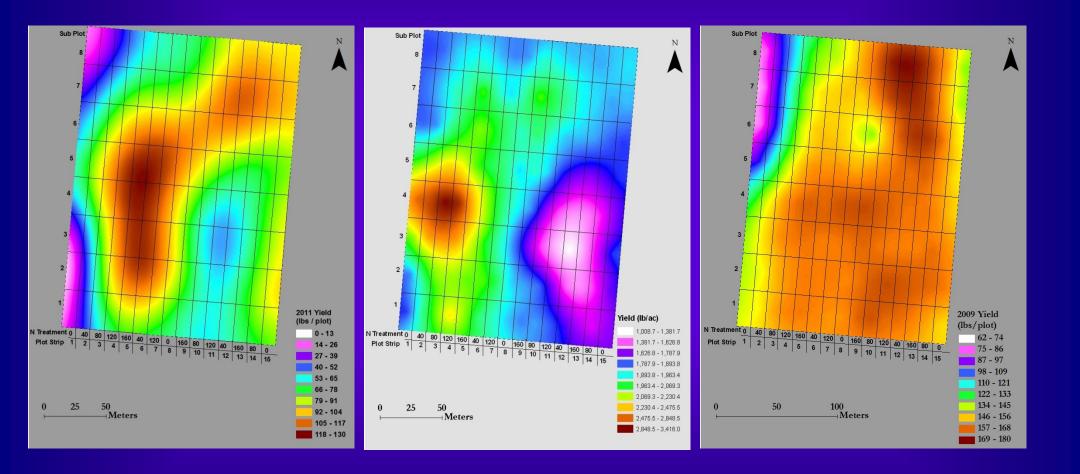

GreenSeeker RT 200 NDVI Mapping System

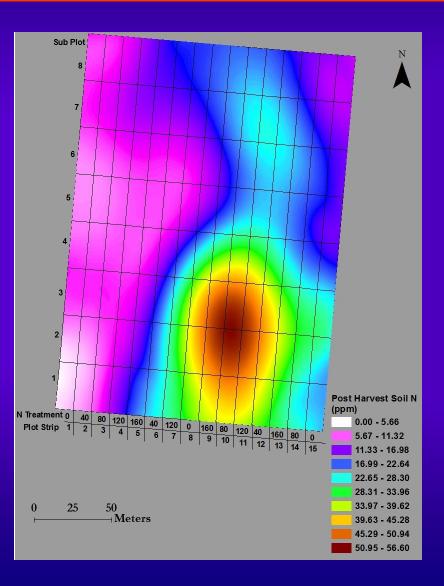

Coefficient of Variation (%) in NDVI, Leaf N, Yield, and Soil N within Each Strip Plot

							_	_			Post-
Strip		NDVI	NDVI	NDVI	NDVI	Leaf N	Leaf N	Leaf N	Leaf N		harvest soil
plot	N rate	7-5-11	7-27-11	8-4-11	8-17-11	7-5-11	7-27-11	8-4-11	8-17-11	Yield	N
1	0	19.2	10.1	11.3	9.3	8.3	13.1	14.8	18.1	5.6	79.7
2	40	10.3	7.5	5.6	3.6	5.4	8.2	16.3	11.3	23.2	37.5
3	80	4.3	4.2	3.2	2.7	5.3	7.0	7.5	5.1	17.5	34.9
4	120	6.1	7.0	1.5	1.0	7.5	4.7	6.7	6.4	13.7	58.7
5	160	2.8	2.2	1.7	1.4	2.4	5.8	4.3	3.3	9.6	60.3
6	40	5.8	8.6	2.9	2.1	4.3	3.8	3.7	6.6	29.3	51.1
7	120	18.0	13.8	6.8	5.3	6.3	3.1	3.1	5.7	27.0	49.9
8	0	6.1	5.1	2.4	1.2	5.6	6.1	7.7	8.7	19.5	59.8
9	160	5.1	4.0	3.0	1.9	3.9	5.5	3.0	4.5	20.1	103.2
10	80	4.4	19.7	2.2	1.9	3.2	9.2	2.2	4.7	20.3	53.9
11	120	1.6	3.4	3.0	1.9	3.2	8.6	3.9	3.9	13.4	79.3
12	40	3.8	3.9	2.8	2.3	4.4	10.5	2.6	8.3	36.3	59.2
13	160	2.1	1.8	1.5	1.3	4.5	4.8	3.6	4.9	24.0	40.8
14	80	3.4	4.9	1.0	1.0	2.9	3.5	4.2	5.0	19.0	72.8
15	0	7.6	5.4	2.9	3.0	4.0	7.0	3.9	9.4	9.1	22.0


Moran's I and Scatter Plot of Residual Yields

LISA Cluster Map of Residual Yields


Canopy NDVI Maps


Leaf N Maps

Lint Yield Maps

Post-Harvest Soil N (Nitrate + Ammonium) Map

Correlations of Yields with NDVI

Dependent	Independent		
variable	variable	R ²	Significance
Lint yield	NDVI_7-20-09	0.28	**
Lint yield	NDVI_8-04-09	0.43	*
Lint yield	NDVI_8-24-09	0.51	**
Lint yield	NDVI_6-23-10	0.02	ns
Lint yield	NDVI_7-20-10	0.25	**
Lint yield	NDVI_8-03-10	0.14	**
Lint yield	NDVI_8-16-10	0.16	**
Lint yield	NDVI_7-05-11	0.13	**
Lint yield	NDVI_7-27-11	0.18	**
Lint yield	NDVI_8-04-11	0.29	**
Lint yield	NDVI_8-17-11	0.26	**

Correlations of Leaf N Conc. with NDVI

Dependent	Independent			
variable	variable	R ²	Ρ	
Leaf N_7-20-09	NDVI_7-20-09	0.19	**	
Leaf N_8-04-09	NDVI_8-04-09	0.36	**	
Leaf N_8-24-09	NDVI_8-24-09	0.11	**	
Leaf N_6-23-10	NDVI_6-23-10	0.02	ns	
Leaf N_7-15-10	NDVI_7-20-10	0.01	ns	
Leaf N_8-02-10	NDVI_8-03-10	0.01	ns	
Leaf N_8-16-10	NDVI_8-16-10	0.02	ns	
Leaf N_7-05-11	NDVI_7-05-11	0.01	ns	
Leaf N_7-27-11	NDVI_7-27-11	0.00	ns	
Leaf N_8-04-11	NDVI_8-04-11	0.05	*	
Leaf N_8-17-11	NDVI_8-17-11	0.08	**	

Summary

 Significant global spatial autocorrelation of residual yields within the test field based on Moran's I statistic.

The LISA cluster map shows that there are some significant local clusters of residual yields within the test field.

 Significant but weak correlations of lint yield with canopy NDVI at early square and early, mid, and late bloom stages.

Canopy NDVI is not a strong indicator of plant N nutrition during early square to late bloom.

Acknowledgments

Fluid Fertilizer Foundation (FFF) Cotton Incorporated

Thanks!!!

Questions???